
Versalent

USBM232 Mouse-Serial Converter Manual

Version 2.04

Revised Jan 24, 2025

General Description:

 The Versalent USBM232 is a small adapter which converts a standard USB wired mouse to an

RS232 mouse for use with non-USB systems. RS232 messages are generated periodically so the mouse

position and button states can be tracked by computer systems which do not provide a USB interface.

There is no single RS232 mouse standard for representing mouse movements. Microsoft, Logitech, Sun,

and MouseSystems all had slightly different standards when serial mice were prevalent. They supported

different numbers of buttons, and typically no scroll wheels. USBM232 offers selectable output data

formats including the original Microsoft Serial Mouse Format (no scroll wheel), a Custom Format which

extends the Microsoft format with scroll wheel data, and a unique Versalent ASCII Format which consists

entirely of ASCII viewable characters.

 Normal mouse usage requires some type of graphic interface which allows the operator to see a

mouse cursor so that appropriate actions can be taken when the mouse is in particular positions, and

the USBM232 provides the incremental position data needed to navigate the cursor on a non-USB

system screen. The USBM232 operates with wired mice only. If a mouse will operate with a standard

PC without loading any special drivers, it will operate with the USBM232. Some mice offer more

functions than the standard two-button mouse, however USBM232 cannot provide any of those

advanced features since it cannot load unique drivers. It provides information on X-Y movement, left

and right button clicks, and scroll wheel rotation. Future versions may add operation with composite

devices (mouse/keyboard combos) which will allow for wireless mice.

 When the USBM232 is powered on the GREEN LED flashes very quickly until it finds a USB

mouse – then flashes noticeably slower. It then begins sending position messages as it detects mouse

movements.

Microsoft still includes its original serial mouse driver in it’s latest operating systems (up to

WIN10) which means a standard Windows computer can still use a serial mouse -- or a USB

mouse with the USBM232. This driver requires that when the serial Request-To-Send signal

is toggled, the mouse responds with a 1200 Baud/No Parity ‘M’ character, so the USBM

implements this RTS feature in MS Mouse mode. If you use MS Mouse mode, the RTS signal

MUST be driven by your host’s serial port, or if unused must tied to an inactive low level

(0v to -25v). The USBM232 does tie this signal weakly to ground, however if a long

cable/wire is connected to the USBM232’s DB9 pin and is left unconnected, cable crosstalk

can randomly inject noise that acts like an RTS signal disrupting mouse communications.

Alternatively the USBM232 can be ordered with the ‘RR5’ option which disconnects the RTS

signal from the DB9 connector. MS Mouse mode will still operate however the auto-find

feature of the Windows driver will not operate so the mouse will not be automatically

detected by a Windows/DOS computer.

If your WIN10 or greater computer fails to communicate with a serial mouse, it may be

necessary to issue the following command ‘sc config sermouse start=demand’ in a DOS

command-line window with administrator privileges.

Models Available:

To accommodate various power options and RS232 configurations, the USBM232 is offered in the

following models:

Model# RS232

Type

Power

Input

Defining Features

USBM232-014 DCE +5VDC Power input on DB9 Pin 4

USBM232-016 DCE +5VDC Power input on DB9 Pin 6

USBM232-024 DCE 6-12VDC Power input on DB9 Pin 4, or power jack/ext wall brick

USBM232-026 DCE 6-12VDC Power input on DB9 Pin 6, or power jack/ext wall brick

USBM232-034 DTE +5VDC Power input on DB9 Pin 4

USBM232-036 DTE +5VDC Power input on DB9 Pin 6

USBM232-044 DTE 6-12VDC Power input on DB9 Pin 4, or power jack/ext wall brick

USBM232-046 DTE 6-12VDC Power input on DB9 Pin 6, or power jack/ext wall brick

USBM232-124 DCE 4-30VDC Power input on DB9 Pin 4, or power jack/ext wall brick

USBM232-126 DCE 4-30VDC Power input on DB9 Pin 6, or power jack/ext wall brick

USBM232-144 DTE 4-30VDC Power input on DB9 Pin 4, or power jack/ext wall brick

USBM232-146 DTE 4-30VDC Power input on DB9 Pin 6, or power jack/ext wall brick

The two following optional suffixes add these additional features:

• RR5 -- this suffix disables the RTS signal and is intended for use with devices NOT operating the

Microsoft Serial Protocol. MS protocol uses RTS to auto-identify the COM port to which a serial

mouse is connected .. and is generally required for that protocol. If the user configures the

USBM232 to operate a different protocol, it is possible that an unused/undriven RTS signal can

inject noise and interfere with USBM232 operation.

• E -- this suffix adds both an E-baud feature, and a ‘command-protection’ feature. E-baud

provides a command which allows the user to change the unit baud rate without opening the

case .. instead of changing the internal baud jumpers. Command protection adds a key-string

that must precede each single-character command. This feature prevents inadvertent

configuration changes which can occur during host startup for instance, when the host may

generate a random serial character which could alter the desired operating mode or sensitivity.

These suffixes/features can be added individually or in combination.

USBM232 Configuration Application:

A Windows USBM232 Configuration utility is available for download at www.versalent.biz/dl.htm

which allows you to configure and test a USBM232 device. It allows you to execute the command set

below for unit setup and testing.

USBM232 Output Message Formats:

 There are three selectable formats for the serial output of mouse data. Refer to the command

set below to set the desired format. Once set, this value is retained in non-volatile storage so the device

powers up and/or resets to this mode.

1) Microsoft Serial Mouse Format -- this is a binary format (meaning that some characters are not

printable/viewable). It is the most efficient of the three available formats in that each message

contains only 3 characters (bytes) of data. Because of the small message size it is most suitable

for low baud rate applications, although when it was devised, mice did not have scroll wheels so

it contains no field to transfer that information. This format transfers data for X-Y movement

and L/R mouse buttons only. The details of the data format are contained below in the

Command Set description that follows.

2) Custom Binary Mode -- this binary mode is similar to the Microsoft Serial Mouse Format,

except that it adds another byte for the scroll wheel and the message length is therefore 4

characters (1 more than the Microsoft format above). This is a unique format created by

Versalent to maintain the transfer efficiency of the Microsoft format while adding scroll wheel

data. Characters are not printable/viewable but it allows for efficient transfer of X-Y movement,

L/R mouse buttons, and scroll wheel movement. The details of this data format are contained in

the Command Set description that follows.

3) ASCII Mode -- this unique Versalent ASCII mode format is the least efficient of the 3 user

modes, however provides for human-readable messages. It uses 10 characters per movement

message and displays neatly formatted messages on a terminal-emulator screen. It can be used

for diagnostics and validation, or for applications that can provide higher baud rates (typically >

9600). Data analysis by the receiving application is easier since X-Y data and button data is not

mixed across bytes as it is in the two binary formats. The receiver’s serial buffer may have to be

larger than for the binary modes since there are significantly more characters transferred. The

details of this data format are contained in the Command Set description that follows.

XON/XOFF Data Management:

 The USB232 will only accept an XOFF if there is currently a USB mouse connected, and

enumerated. This means that the LED flash rate has slowed to its lower rate of about 1 flash per second

with equal on and off times. Once the XOFF is received, the flash rate remains the same, however the

led on time becomes very short so the light pulse changes noticeably. This generally will not be seen

because the duration of an XOFF state is typically very short .. the host normally sends an XON following

an XOFF within a fraction of a second to resume communications. However if the host leaves the

USBM232 in the XOFF state for an extended period, this change in flash pattern will be evident. The XON

character is 0x11 also referred to as DC1, and XOFF is 0x13 also referred to as DC3.

USBM232 provides a fail-safe communications re-start timeout of 3 seconds .. if the USBM232

has been left in the XOFF state for longer than this, it will automatically negate the XOFF command and

resume sending position messages. This prevents the USBM232 from unintentionally being disabled for

more than a short period.

Power and LED Operation:

 When the USBM232 is powered on either by providing power through the DB9 connector, or

with the optional wall-brick, the GREEN LED flashes very quickly with no USB mouse attached. The flash

rate slows to 1 flash per second once it recognizes an attached mouse. This visual indication provides a

confirmation that the mouse was detected and initialized (or ‘enumerated’ in USB terms). It issues no

power-up messages to the RS232 host and begins sending mouse position messages in the selected

output format. This allows the fastest and most seamless return to normal operation from a power

interruption, or other USBM232 reset. The host can at any time confirm its connection to a USBM232

by sending the ‘V’ command – USBM232 returns a firmware version (ASCII) string.

Command set:

USBM232 executes the following command set. These commands and responses are all ASCII characters

and can be executed at any time during operation. Non-E version device commands are shown and are

all single character commands. However, it is not uncommon for a host to generate a few random

RS232 characters at power-up or on reset and these could potentially corrupt a USBM232 setting.

E-version devices are available to address this providing more robust operation, as well as offering

electrically programmable baud parameters (eliminating the need to open the case).

E-version devices add an 8-character ‘key’ to precede all commands and a 0x0d (carriage return)

character as a command terminator. It is very unlikely that the key will be generated inadvertently so

settings are protected. The key is the fixed 8-charactger string “/USBM232” .

Examples: Non-E Version command V (to retrieve firmware version)

 E Version command /USBM232V{CR}

The list below describes non-E version commands. E-version commands are identical except that as

above, they must be immediately preceded with the ‘key’ string, and are terminated with a {CR]

character – except as noted in each command description. (key string = “/USBM232”)

1) V -- Return the firmware version number. The USBM232 flushes any mouse position data in its

buffer and returns “USBM232vX.XX” (or “USBM232vX.XXE” for E version devices) where X.XX is

the firmware version number i.e. 1.08 .

2) A -- Set the output mode to Versalent ASCII mode. This provides a more human readable output

format which can be viewed directly with a terminal emulation program. Instead of 3 bytes of

binary data this format uses 10 bytes of hexadecimal formatted digits. It is less efficient and requires

higher baud rates to prevent significant transmission latency in the mouse system. When this

command is received the USBM232 flushes its output buffer, saves the setting in non-volatile

memory and responds with ASCII [ACK] if successful or [NAK} if unsuccessful. The [ACK] will be

delayed by the ~20ms required to write to non-volatile memory. Mouse data generation and

transmission then resumes.

ASCII Format Description:

 For each incremental mouse movement or click, a short RS232 (ASCII) message is output

which has the following format:

XX YY L R WW CRLF

Incremental X-Axis movement

Incremental Y-Axis movement

Left Button Status

Right Button Status

Scroll Wheel movement

Message Terminator

XX represents two characters which describe the x-axis incremental movement since the last

message. These two ASCII hexadecimal digits form a signed (two’s complement) number

ranging from “00” to “7F” for forward x-axis motion, and “FF” down to “80” for reverse x-axis

motion. So a single increment of motion in the positive direction is represented by “01” and a

single increment of motion in the reverse direction is represented by “FF”.

YY represents two characters which describe the y-axis incremental movement since the last

message. These two ASCII hexadecimal digits form a signed (two’s complement) number

ranging from “00” to “7F” for forward y-axis motion, and “FF” down to “80” for reverse y-axis

motion. . Again a single increment of motion in the positive direction is represented by “01”

and a single increment of motion in the reverse direction is represented by “FF”.

L represents a single character indicating the current state of the Left Mouse Button . When it

is pressed L= “1” and when released this value is “0”. A press or release of the button (with or

without any x/y movement) will cause a new RS232 message to be generated.

R represents a single character indicating the current state of the Right Mouse Button . When it

is pressed R = “1” and when released this value is “0”. A press or release of the button (with or

without any x/y movement) will cause a new RS232 message to be generated.

WW represents two characters which describe the incremental scroll wheel movement since

the last message. These two ASCII hexadecimal digits form a signed (two’s complement)

number ranging from “00” to “7F” for forward y-axis motion, and “FF” down to “80” for

reverse y-axis motion.

CRLF represents the standard RS232 Carriage Return and Line Feed Characters which mark the

end of the message.

 The sign of the mouse motion is given by the mouse standard below:

 Positive X direction

 Positive Y direction

Download sample C# message parsing code at

https://www.versalent.biz/downloads/usbmsamplecode.txt

ASCII Format Messaging Rate:

 This message format provides human readability at the expense of message size over

the binary formats. Quick mouse movements can transfer a lot of characters – fast

movements can generate approximately:

 (10 chars/message) X (250 messages/0.25 second) = 2500 characters per ¼ second.

Since each movement message consists of 10 characters, it is recommended that the

USBM232 be operated at a minimum of 9600 baud corresponding to a message transmission

time of approximately 10ms -- higher rates are recommended to minimize transmission

latencies and keep the mouse responsive. The USBM232 supports up to 115k baud and is

shipped with a default 9600k baud setting.

The above numbers are typical for a fast mouse movement of approximately one foot,

so the host should have a receive buffer of 2k characters or more. Even this may not be

enough if the host does not process these received messages quickly, or it pauses processing

while performing other tasks. To help prevent the host from being overrun, the USBM232

implements the XON/XOFF protocol which allows the host to stop the USBM232 from

transmitting new messages if it is in danger of being overrun. When the host sends the RS232

XOFF character, the USBM232 immediately stops sending messages until it receives an XON

character. If the mouse continues to move and generate data, that data is discarded.

3) B -- Set the output mode to Microsoft Serial Mouse Format. When received the USBM232 flushes

its output buffer, saves the setting in non-volatile memory and responds with ASCII [ACK] if

successful or [NAK} if unsuccessful. . The response may be delayed by ~ 20ms as required to

erase/re-write flash memory. In this binary format mode only 3 bytes are sent per mouse

movement as shown below. Notice that no scroll wheel data is available in this format. This format

is very efficient can be very useful for low baud rate systems. **

 D7 D6 D5 D4 D3 D2 D1 D0

 1st byte | 1 1 LB RB Y7 Y6 X7 X6

 2nd byte | 1 0 X5 X4 X3 X2 X1 X0

 3rd byte | 1 0 Y5 Y4 Y3 Y2 Y1 Y0

 LB is the state of the left button, 1 = pressed, 0 = released.

 RB is the state of the right button, 1 = pressed, 0 = released

 X0-7 is movement of the mouse in the X direction since the

 last packet. Positive movement is toward the right.

 Y0-7 is movement of the mouse in the Y direction since the

 last packet. Positive movement is back, toward the user.

Note that these are 8-bit characters with the upper bit always 1. And as these messages can be

packed, the host can synchronize itself and identify the first byte/character of a message by D6 = ‘1’

in the first byte of a message.

Special Notes for Win98/DOS and other old Microsoft-Driver Users:

This mode is compatible with the Microsoft drivers, however to use those drivers you MUST

configure USBM232 to operate at 1200 baud/No Parity even if your COM port shows that it is set

to some other speed. When the mouse is detected and the driver ‘takes over’ the COM port it

internally changes the baud rate to 1200 but in some cases does NOT update the System Device

Manager to show this change. Online documents describe the MS Serial protocol as using 7-bit

characters (bits 0-6) which infers that bit 7 should be inactive (set to 0).. however as shown above

the protocol actually expects that Bit 7 of each character = 1.. This mode can be used at faster

baud rates with a user-provided driver however the standard MS driver only operates at 1200

baud regardless of the setting of the COM port.

4) C -- Set the output mode to Custom Binary Mode. When received the USBM232 flushes its output

buffer, saves the setting in non-volatile memory and responds with ASCII [ACK] if successful or [NAK}

if unsuccessful. This binary mode is similar to the Microsoft Serial Mouse format, except that it adds

another byte for the scroll wheel. The message length is therefore 4 bytes. The response may be

delayed by ~ 20ms as required to erase/re-write flash memory. Mouse data generation and

transmission then resumes. . This format can be very useful for low baud rate systems. **

 D7 D6 D5 D4 D3 D2 D1 D0

 1st byte | 1 0 LB RB Y7 Y6 X7 X6

 2nd byte | 0 S7 X5 X4 X3 X2 X1 X0

 3rd byte | 0 S6 Y5 Y4 Y3 Y2 Y1 Y0

 4th byte | 0 0 S5 S4 S3 S2 S1 S0

 LB is the state of the left button, 1 = pressed, 0 = released.

 RB is the state of the right button, 1 = pressed, 0 = released

 X0-7 is movement of the mouse in the X direction since the

 last packet. Positive movement is toward the right.

Y0-7 is movement of the mouse in the Y direction since the

 last packet. Positive movement is back, toward the user.

 S0-7 is the movement of the scroll wheel. Positive is a roll forward, negative is a roll back.

The user can decide whether to add this movement to the x-axis, or y-axis position. Note that the

first byte of each message has D7=1 and can be used by the receiver to synchronize itself to the

message stream.

5) [key]Dxy{CR} – Set the baud rate electronically. This command is ONLY available in E-version

devices so as shown the command character ‘D’ is preceded by the key and followed by two ASCII

parameters and ends with a {CR}:

Param Baud Rate Param Parity

x = ‘0’ Use internal jumper settings y=’0,1 or 2’ ignored

x = ‘1’ 600

y=’0’ ODD

y=’1’ NONE

y=’2’ EVEN

x = ‘2’ 1200

x = ‘3’ 4800

x = ‘4’ 9600

x = ‘5’ 19.2k

x = ‘6’ 38.4k

x = ‘7’ 57.6k

x = ‘8’ 115.2k

The USBM232 stores this setting in non-volatile memory and responds with an {ACK} issued at the

initial baud rate on success or a [NAK} on failure. It then changes the baud/parity, flushes its serial

buffers and resumes operation with no reset or power-cycle required. It will then power up with

these serial settings until changed.

6) M -- Return the current (ASCII/Binary/Custom) mode of the USBM232. . When received, the

USBM232 stops transmitting, flushes any mouse data in its output buffer, and responds with an ‘A’ ,

‘B’ , or ‘C’ character indicating whether it is in ASCII mode, Microsoft Binary mode, or Custom

Binary mode.

7) S -- Stop generating mouse position data (temporarily). When received, the USBM232 flushes any

mouse data queued for transmission and does not generate any more mouse data. There is no

command response. The USBM232 will respond to other commands like (V)ersion, and (M)ode

requests etc which return responses but mouse data is temporarily suspended. For safety, the STOP

state is exited automatically after 3 seconds, or immediately after receipt of the Resume command.

This command can be used to stop mouse-position data during command interactions with

USBM232.

8) R – Resume generating mouse data after an (S)top command was issued. If no Stop was issued, or a

previous Stop has timed out, this command has no effect. The USBM232 issues an [ACK] if

successful or [NAK] on failure.

9) Yx – This command allows the user to change or retrieve the mouse sensitivity The USBM232

responds with an ASCII [ACK]. Serial mice were used when screen resolutions were low compared

to newer hi-res screens. So it is not surprising that newer USB mice have a different motion

sensitivity. The x character in the command can range from ‘0’ to ‘9’. ‘1’ sets the USBM232 to the

lowest sensitivity (slowest mouse speed) and ‘9’ sets it to the highest sensitivity. X= ‘0’ causes the

USBM232 to return the current sensitivity (one character ‘1’-‘9’) . x > 0 sets a new sensitivity level

and returns an [ACK]. This value is stored in internal non-volatile memory so the unit powers up at

this sensitivity until changed.

The following commands never use a key, or {CR} terminator and there are no ACK/NAK

responses issued

10) [XON] -- This is the single ASCII character (0x11) which re-enables communications after a

previous [XOFF] command had paused communications to prevent host overrun. USBM232

resumes outputting serial characters. An XON command received when XOFF is not in effect is

ignored.

11) [XOFF] – This is the single ASCII character (0x13) which temporarily disables USBM232 serial output

to prevent host overrun USBM232 remains in this disabled state awaiting an XON command to

resume communications. If no XON is received within 5 seconds, USBM232 automatically resumes

communications.

12) RTS (Request To Send) signal. This is not an ASCII character command, but an R232-signal-line

command provided for compatibility with older operating system drivers. When RTS is activated,

USBM232 flushes its data, switches to 1200 BAUD and responds with a single ‘M’ character. This

scheme was used by the original serial mice as a means of finding which port the mouse was

connected. This can occur at any time during operation and not just at power-up – so if the host

computer restarts the USBM232 will respond to this port-identification (without being power-

cycled). Special Note: The RTS signal is terminated lightly onboard, so if it is not used for auto-

identification it can be ignored. However if your signal cable connects to RTS, but your system

does not drive it or ground it, the floating signal line can pickup and inject noise that activates RTS

auto-identification randomly and corrupts mouse data. You can either ground RTS at the end of

the cable, or order the RR5 option (i.e. USBM232-024RR5) which disables RTS onboard.

Mouse Responsiveness:

 Transferring mouse data through a low-baud serial channel requires balancing message count

and mouse responsiveness. Serial messages require processing so they should be minimized, but they

need to be transferred frequently enough that the on-screen cursor can track mouse movements

closely. Long ago Microsoft determined that a 25ms reporting period could track a mouse well enough

to keep up with human perception so mice were designed to aggregate mouse movements and report

on this interval. USBM232 mimics this aggregation period which is especially important for USB mice

which are faster. USBM232 uses a 10ms aggregation period for baud rates faster than 1200 to

provide an even more responsive mouse yet still limit the number of messages required for good

tracking.

 The regularly occurring 25/10ms periods are shortened by either a mouse click (which requires

reporting immediately) or by very fast mouse movements which threaten to overflow the signed 8-bit

X-Y movement values. (See the messaging formats above). So the reporting rate is variable, even down

to zero -- if there is no mouse activity there are no messages, and the host wastes no time processing a

‘quiet’ mouse.

 Mouse sensitivity also affects perceived responsiveness – the number of mouse ‘counts’

delivered for a given motion. USBM232 provides a sensitivity setting to allow the user to adjust the

speed of the perceived motion similar to the setting available in the Windows Control Panel. This setting

extends the Control Panel setting, or If a Windows driver is not operating the USBM232, this setting

provides the needed speed/sensitivity control. Sensitivities can be set from 1 to 9 (lowest to highest)

with the factory default value set to 4. Note that changing the sensitivity does not generally affect

mouse resolution because small motions of a few counts are not altered by the sensitivity algorithms.

Reliability Features:

USBM232 implements an internal watchdog timer, and an internal brown-out detector. Should

its microcontroller get disrupted through static discharge or other temporary interference, the

watchdog will automatically reset the unit so that normal operation resumes with no user intervention.

Or should power droop below an operational threshold the brown-out detector will suspend operation

until power is restored to a normal level. At that point it will resume operation from a reset state again

with no user intervention. Resumption of operation following any kind of reset occurs in approximately

1 second.

Baud Rate/Parity Control:

Baud and parity are set using the 5 internal shorting jumpers as shown below. (E-version

devices can be set electronically instead). To open the snap-together plastic case, there are 2 ‘screw-

driver slots’ on each side of the case at the seam. Gently pry the case open using a small flat-blade

screwdriver at any one of these slots with a little inward pressure while twisting the blade. After the

first internal latch releases, the others release even easier and the two halves of the case separate.

USBM232 can be set to any of the baud rates/parity settings shown in TABLE 1. To configure it

the case is opened, and 5 internal shunt blocks are moved to the positions shown. Note that the 3

shunt blocks on the left control the baud rate and the right two select parity. The table shows shaded

blocks where shunts are to be installed to select the specified settings. The unit will them power-up

with these settings. All baud settings implement 1 stop bit.

An E-Baud setting with x=’0’ causes the USBM232 to use the jumper settings for its serial

settings (‘compatibility’ mode). Any other x value sets the baud rate as detailed in the preceding

table.

See above

Parity Enabled, ODD Parity

See above

Parity Enabled, EVEN Parity

See above

Parity Disabled

TABLE 1

.

Note that any shunt blocks in a horizontal orientation have no effect on serial settings and are

typically used for storing the shunts. USBM232 devices are shipped in the following default

configuration .. 9600 baud, no parity. (All the horizontal blocks have no effect; the only effective one

is the vertical one in the middle – 9600 setting shown.)

Electrical Parameters:

Absolute Maximum Input Voltage

 5V models: -014,-016,-034,-036

 6-12V models: -024,-026,-044,-046

 4-30V models: -124,-126,-144,-146

+5.25VDC (35mA no mouse attached)

+15VDC (40mA no mouse attached)

+31VDC (90mA @4V, 15mA @ 30V typical)

Nominal Voltage Input: +5VDC , 6-12VDC, 4-30VDC

Baud Rate: 600 to 115k selectable via shorting blocks

Parity: Selectable ODD/EVEN/NONE

DB9 Connector Configuration: DTE or DCE (per model number)

Handshake Supported XON/XOFF

Environmental:

Max Operating Temperature: +70oC

Min Operating Temperature: 0oC

Max Storage Temperature: +80oC

Min Storage Temperature: -20oC

Humidity: Non-condensing at all temperatures

Physical:

Size: 2.9” X 1.7” X 0.8”

Weight: 1.4 oz

Mouse Connector: Standard USB Type A

Host Connector: Standard DB9 (female)

Case Color: Black (Ivory available special order)

Power Connector: 5.5 mm X 2.1 mm (male, Ctr Positive)

Document Revision Record:

Revision

Revision Date Description

V1.00 May 14, 2020 Modified from the Preliminary manual

V1.01 May 17, 2020 Add binary output modes

V1.02 May 20, 2020 Add hyperlink to sample code

V1.03 Dec 6, 2020 Add auto-detection (RTS) scheme, change default baud to 9600

V1.04 Dec 15, 2020 Change Binary Mode: characters to set bit 7=1 for all 3

characters. Add mouse-movement aggregation so the host

messaging is at 40Hz (25ms) with larger movements in each

message for fewer messages. Cut timer interval from 10ms to

1ms to better measure the 25ms messaging period,

V1.05 Jan 9, 2021 Add User-Sensitivity adjustment

V1.06 Feb 10, 2021 Add special note regarding floating RTS signal, and RR5 option

available to disable the feature.

V1.07 Nov 20, 2021 Add note box describing RTS feature and need to connect this

signal on the cable.

V1.08 Feb 20, 2021 Correct overall length from 2.6” to 2.9” under ‘PHYSICAL’

V1.09 Apr 12, 2022 Change default baud as shipped to 9600. Note that Serial MS

Mouse protocol uses NO PARITY.

V1.10 May 23, 2022 Change some text regarding mouse sensitivity.

V2.00 Jul 22, 2023 Change to show description for E-version devices with e-baud

V2.01 Sep 20, 2023 Add a bit more description to command key string

V2.02 Dec 16, 2023 Change supply connector dimension from 5mm to 5.5mm

V2.03 Mar 24, 2024 Add note on issuing sc config sermouse command for Win10

V2.04 Jan 24, 2025 Update to add 4-30V models

